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1. Introduction to  the Project : 

Cloud computing as a technology and business enabler has been the most accepted 
change in this decade. The cloud computing definition by NIST (National institute of 
Science & Technology, Department of Commerce, U.S) highlights core ideas. Cloud 
computing is defined by NIST as "Cloud computing is a model for enabling ubiquitous, 
convenient, on-demand network access to a shared pool of configurable computing 
resources (e.g., networks, servers, storage, applications, and services) that can be 
rapidly provisioned and released with minimal man- agement effort or service provider 
interaction " . Cloud computing is being widely adopted by many organizations because 
of cost effective solutions offered to users requirements.

An architecture that depicts the various components of Cloud is shown in figure.1.1.

A representation that includes components of Cloud computing Sys- tem shows the four 
main actors as defined by NIST. These are shown  in figure.1.2. Each actor is an entity (a 
person or an organization) that plays  assigned  role  in cloud.

The cloud consumer is the ultimate stakeholder. A cloud consumer selects the required 
service, signs feasible contracts and uses the ser- vice. The cloud consumer is billed for 
the services requested and makes

Figure 1.1: Basic architecture of Cloud

payments for the services made available to him. For different types of Service models 
that Cloud provides like- Software as a service (SaaS), Platform as a Service (PaaS) and 
Infrastructure as a Service (IaaS) some example usage scenarios are shown in figure. 1.3

An excerpt from Gartner Press Release SYDNEY, Australia, May 18, 2015 says "Global 
spending on IaaS is expected to reach almost US $16.5 billion in 2015, an increase of 
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32.8 percent from 2014, with a compound annual growth rate(CAGR) from 2014 to 2019 
forecast at 29.1 percent."

Cloud providers have to play various roles in the process of managing the system. A 
cloud provider has to provide the requested soft- ware/platform/ infrastructure services, 
has to manage technical features required for providing the services, has to provision the 
services   at acceptable SLA levels and protect the security and privacy of the services. 
Cloud service management is a complex task consisting of among various other 
activities, resource    provisioning.

Figure 1.2: Cloud Actors

Currently users are allocated resources based on their requests. Re- sources requested by 
users are found to be overestimated than their actual requirement. Underestimation of 
resources can cause resource shortage and consequent revenue loss due to penalties for 
SLA  ( Service Level Agreement) violation. Overestimation can lead to idle resources 
and increased costs. It is necessary to utilize these resources properly in order to decrease 
cost to each user. Provisioning of re- sources is a challenging issue being faced by the 
service providers  in Cloud, because the requests come from numerous users, 
requirements dynamically change and there is no specific pattern, trend or seasonality in 
the resource usage of users on Cloud. The Google cloud usage data published as trace  
has  been studied and the usage of resources and resource requested in shown  in  figure 
1.4
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Figure 1.3: Cloud Consumer use case  scenarios

Figure  1.4:    Used  Resource  Vs  allocated  resource  of  Google  Cluster  Data.

This shows that, resource requirements of the users need to be met  as per their use rather 
than what users request for. The real challenge is to be able to provide to the users such 
quantity of resources that  they  will  actually use.
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Data Centers are used to house the large compute and storage resources to be made 
available to users by the cloud providers. Cloud computing applications run over multiple 
computers connected by a network .

Figure 1.5:  Typical data center  network

As can be seen in the figure 1.5 each of the various virtual machines that are available, 
resources will be provisioned to them. How resource management relates to power 
consumption and power saving is very important for modern day businesses. Google is 
the first major web company that has revealed its power consumption information. 
Google uses 260 million watts continuously across the globe as mentioned in their blog-
Google Green. According to Koomey, data centers comprised 1.3% of the global energy 
usage in 2010. Similarly other major cloud providers use huge amount of power. 
Assuming three-year server and 15-year other infrastructure cost consolidation, energy-
related costs are estimated to amount to 41.6 % of operation cost of large-scale Data 
Centers as discussed by Hamilton in  and as shown in figure.   1.6 .Only power costs 
individually, are lower than infrastructure costs, and less than the servers themselves. 
Servers are the dominant cost. Power is only 23% of the total, but power distribution and 
cooling make up 82% of the costs of infrastructure. Cost of building is 12-15%. Hence, 
overall power consumption costs are considerable.

2. Objectives of the Project : 

Most of the organizations currently heavily rely on using Infrastructure, Platform or 
Software as a Service from  various Cloud Providers. These Providers expect users to 
give  request for resources that they require and  are billed accordingly. The users of 
cloud resources do not want to have business discontinuities due to unavailability of 
resources throughout their business process. This results in over-estimated request for 
resources. An adaptive system the can predict the resource requirement of users and also 
automatically scales as opposed to reactive scaling  will enable making huge resource 
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saving for the Cloud Resource Providers and  saving for the  users as they will be billed 
only for their used resource and the resource wastage will drastically reduce. In all this 
process, meeting users' Service Level Agreements is important pre-requisite. The main 
objectives of this project are: 

1. Developing a  framework which manages to provide resources within stated 
SLAs

2. Developing Adaptive system that manages resources and services  with reduced 
preparation / setup time .

3. Developing a system by having SLAs specified explicitly and ensuring that the 
system meets  them

    2. 1. Whether Objectives were achieved  :  

  Yes,  The stated objectives were achieved. 

An adaptive Framework that provides Resources within stated SLAs, enables Predictive 
Auto-scaling was developed. 
Additionally, Energy Savings achieved because of the Prediction were also computed 
for two implementations - Intel Xeon E5 2687 and Intel Xeon E5 2697 , using 
approaches Distance Weighted Averaging ( DWA) and Locally Weighted Regression 
(LWR) .

3. Challenges :

Resource provisioning and Energy estimation gets complicated in the Cloud 

scenario as compared to the Web based and Grid based systems because:

a) Resources are requested by the user in real time. The resources are 
requested when the application starts and this information is not
available beforehand. Users expect Instantaneous Resource 
availability. The resources are to be made available to the users as 
the application execution proceeds. This is difficult to implement by 
the Cloud Provider because of erratic requests of various users as 
shown by the Cloud usage trace - Google Trace data as described in
[13].

b)    To make  available  resources  as  per  changing  requests  of  users,  
to enable dynamic scalability of resources, reactive approaches are 
easier to implement but take unacceptable time to provision resources. 
Predictive approaches serve the purpose of resource reservation but are 
difficult to implement as they depend on historical data and on cloud. 
New users without historical information are more common, making 
proactive provisioning difficult for cloud environment.

c) The trace of Cloud usage show that it does  not  lend  itself  to  existing 
prediction approaches like Time series, Queuing models Bayesian 
model, SVM, Neural  networks  etc.,  because  of  absence  of patterns, 
trends and seasonality. The ACF( Auto Correlation Function) study of 
Google Cluster Data from figure. 3.1 and as shown in figure. 3.4. Cloud 
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access and hence resource usage shows no specific pattern ( From 
[14] ). Corresponding correlogram is shown here in fig  3.1.

Figure 3.1:  Correlogram of Google ClusterData

d) The machines that are made available to users by various providers 

like Google Cloud Platform- Google Compute Engine - available at

cloud.google.com/compute/docs are quite variable. For e.g. Standard 

machine types, High memory machine types, High CPU machine 

types as shown in fig. 3.2 

Figure  3.2 :  Various machine types on GCE
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Detailed information for high CPU type  machines  available  from the website 
shows how various types of resource requests need to be met for different users 
tasks.  This snapshot in fig. 3.3 shows the details.

e)  Requests for these machines compute units, the virtual CPUs are 
actually implemented on Intel Sandy Bridge, Intel IVY Bridge, Intel 
Haswell machines. Google Compute Engine unit is a unit of CPU capacity 
that is used to describe the compute capability of machine types. Google has 
chosen 2.75 GCEUs to represent the minimum computational capacity of one 
virtual CPU (a hardware hyper-thread) on Sandy Bridge, Ivy Bridge, or 
Haswell platforms. These are different in their energy consumption--  
idle, full load and average. Therefore it becomes difficult to exactly 
estimate the power consumed per user request for CPU. Recent work by 
Ian Cutress at Anandtech helps in knowing these power consumption as 
shown in figure.3.4 .

f) . Energy consumed per job, per task cannot be estimated as an absolute number 
because of the data obfuscation in Google Cluster data. Dynamic power consumption 
here based on the resource units consumed gives us energy consumed and energy saved 
on two models - Intel Xeon 2687 and Intel Xeon 2697 is a relative measure. Same 
approach can be employed on various other machines where proportional increase in 
power consumption by use of compute units is known. 
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Figure 3.3 : Machine types for Google Compute Engine

Figure 3.4:  Power consumption for two chips of  IVYBridge
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Work related to Real Cloud usage data is studied to find if any work related to 

prediction approaches using real cloud data, at least simu- lated data of real cloud 

usage is done. Real cloud usage data has been released by Google in 2011. The 

trace ver 1.0 is only a short trace that describes a 7 hour period from one cell 

(cluster). We have used the Google Trace Ver 2.0 , which is a 29 day trace on 12k-

machine cell in May 2011 with following statistics:

Figure 3.5: Consolidated information regarding trace

The work using this trace is useful to underline the scale of resources, users and 

hence the requests that need to be focused in developing the prediction algorithm for 

real cloud usage data. The paper  by Mishra et al., [81]captures the heterogeneity and 

dynamicity of data under consideration the Google trace. In [1] by Charles Reiss, 

Consolidated cloud environments are constructed from numerous machine classes. 

Extremely dynamic resource demands with high variation over short duration are 

observed. This leads  to  various  issues  like  rapid task scheduling decision making, 

revision of previous assignment decisions, prediction interference for resources over 

time.  Heterogeneity   is observed in Machine types and attributes, workload types, job 

duration, task shapes and distributions. Dynamicity is observed in Machine churn,  task  
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and  job churn.

In [82], authors compare the two workloads- GridMix3 and Yahoo production  

cluster  by  using  k  means  clustering approach.

By using time series the data of real cloud usage trace from IBM hosted  cloud  is  

studied  for  both  CPU  and  Memory  usage  is   [83].    By using the Principal 

Component Analysis approach, prediction for resource usage across multiple nodes is 

implemented. Using these predictions and spatial correlations across cluster of virtual 

machines, better utilization of physical machines is suggested.

Synthetic workload was generated in [84] by using the resource utilization and task 

wait time. Deriving characterization models of task usage shapes from Google

compute cloud of 6 clusters spanning 5 days is used. This is smaller trace as 

compared to what we are using. An important paper that discusses about 

scheduling  and dependencies is [85] by Sharma. In order to identify the 

performance of compute clusters at Google scale, realistic workloads are needed. 

So that Task placement constraints as used in actual Google Clusters are to be 

incorporated into workloads apart from the resource requirements. A methodology

Consisting of data preparation workflows, baseline work- flows and treatment 

workflows is used. Machine constraint characterization and task constraint 

characterization are obtained. This is used in identifying performance impact of 

task placement constraints.

A useful paper that helps in understanding the workload (for jobs, tasks) and 

host load (at machine level) in a Google Data Center in comparison to the Grid 

system is provided in [86] by Sheng Di. Comparison of Workload of job or task

length of job or task, job priority, job submission frequency and job resource 

utilization are discussed. For host load, maximum load and machine usage level 

between grids and clouds have been shown. This kind of characterization is very 

useful for job scheduling and prediction of load on various machines . In [87]

authors have provided a reusable approach for characterizing cloud workload 

obtained from the Google Compute trace of 29 days. The characterization has 

considered patterns for both the users and tasks. Their characterization across 

various clusters helps researchers actually use the published trace more specific to 
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their application.

By using an approach called Autonomous cooperative cloud based platforms 

(ACCP), in [88], authors have shown the advantage of co- operative approach in 

Inter-Cloud environments. A simulation based evaluation based on SCIENCE

CLOUD under a model of realistic Google Cluster data set [89] has been used. 

They have tried to show that this approach gives better performance as compared

to selfish approach in large clusters.

3.1  Issues  with  existing  prediction techniques

Actually, study of related work started with trying find if efficient scaling 

techniques are available. In current practice, cloud scaling is still reactive. Reactive 

rule based methods enable scaling based on a specific metric reaching predefined

limits. Reactive techniques add re- sources to the system on happening of certain

events like performance degradation, certain time being elapsed or thresholds on 

number of users, number of active VMs available at certain point in time. This 

approach is implemented by several cloud providers such as Amazon [7], in third 

party tools such as RightScale [11] or AzureWatch [35] Predictive scaling shown an

encouraging alternative to reactive scaling specifically when we expect resources to 

be available beforehand and do not want the users to wait. The other advantages 

and limitations of predictive scaling are discussed in next section. Existing body 

of research work focuses on various types of predictive techniques to tell how much

of resource will be required by the various users in next period of time. These 

techniques are discussed in detail in Section no. 2. A study of the existing 

approaches to prediction, available data traces that have been used in prediction has 

been done (as listed in subsection 2.4). To arrive at a solution, most of the available

approaches have been weighed for feasibility. Based on current research body of 

work available following conclusions are reached :

1. Most of the techniques used today in resource prediction are based on  

prediction  for Web workloads. The main difference between Web 

workloads and Cloud Workloads is the absence of trend, seasonality and 
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diurnality in Cloud workloads. Hence, the approaches used in Cloud resource 

prediction need to be different from those for Web workloads.

2. Current approaches to  predict  resource  requirements  are  based on 

availability and processing of large amount of history data. This  is not

necessarily possible when the prediction is to be done for

initial start cases in any system.
3. Fetching and Processing of history data  requires  time  even  with best 

algorithm and data access techniques. This time lag is dif- ficult to afford for 

real time prediction in Cloud resource pro- visioning

4. Some of the combined approaches shown by other  researches need to 

select specific approaches based on available data. But this would also show 

some lag time and not enable prediction in real time.

5. The work on energy saving has mostly been coarse grained, whereas our

approach is more fine grained. We inspect the possible energy saving that can

be obtained by saving resource units, more specifically CPU units for each 

job of individual user.

3.1.1 Cloud mining:  Resource Requests and   Usage

The problem of low utilization of resources can be overcome by good prediction 

techniques. Bridging the gap between real requirements and estimated requirements 

of the users, will lead to huge savings for both the providers and also to the users. 

Indirectly the sum total of saving that could be derived per user taking his various 

jobs, multiple tasks and multiple days on which he makes these requests, will be 

huge. This huge amount of resource saving is also accompanied by huge amount of 

energy savings. Per user savings are calculated here. This can be extrapolated to see 

the data center wide savings that can be achieved per month. This in real time is a 

significant contribution of our work.

The scatter plot in fig.  3.6  is  representation  of  CPU  requests  and CPU usage of 
tasks. There is a large variation in users resource requests.



17

Observations from the study of the Google cluster data can be summarized as:

1. Performing analysis on large-scale trace-logs is fundamental to deriving realistic 
prediction models.

2. The Cloud environment does not exhibit obvious cyclic behavior. Patterns of cloud 
load data are not cyclic, seasonal, diurnal. Cur- rent load is not related to previous load 
observations.  This is the main reason for failure of most of  the  existing  approaches  
based on Time series, Hidden Markov model, Bayes method etc.

3. Workloads in clouds are highly variable with respect to time.

4.Users grossly overestimate the resources required to meet business objectives.  This 
forms the premise for this    work.

5. Modeling user behavior is a critical factor when characterizing Cloud   workloads.
User behavior is important to   predict future resource  requirements.

Figure 3.6: Scatter plot of the CPU requests and CPU usage values for bucket 0,bucket 

1 of Google cluster    data

3.2 Enhanced  Instance  Based Learning

In implementation of Enhanced instance based learning, from the stated trace data , we 
have used user  id,  CPU  requested,  CPU used, memory requested, memory used for various  
cases.  Resource  usage prediction for the user for whom only his amount of resource requested
information is available is computed. What would be the energy saved because of each variant of 
resource  prediction  is  also  made  available.
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Such estimated values for CPU Usage and Memory Usage are predicted Compute units and 
Memory units that will be required by Cloud user in the near future. Estimated energy saved is 
also estimated for two different machine types -  ( INTEL XEON E5 2687 and INTEL  XEON  
E5 2697)

4.  Achievement of the Project

Significant achievements resulted from this work. The Resource Provisioning Framework that is 
necessary  had to take into consideration multiple constraints like Users' Service Level 
Agreements which are interdependent. 

1.  In  trying to have a scalable system, it became necessary to get a resource prediction system 
that would overcome the limitations of the existing approaches to scaling like  time delay 
because of reactive scaling , wasted resources for the providers and unnecessary cost for 
the Cloud users. 

2.  Proposed work uses Enhanced Instance Based Learning approach for resource requirements 
prediction and runs this approach with actual Cloud trace data. The energy saving that 
would be achieved with predicted resources as compared to existing user requests for 
resources are shown. 

3.  The entire solution is tested by having a real private cloud using HP Cloud system Enterprise 
installed on our servers in the Cloud computing Lab.Using the proposed Enhanced 
Instance Based Learning (EIBL), the saving of resource units per collection of machines 
per hour is quite significant. This also translates to significant saving of energy units per 
user jobs. This enables better and efficient utilization of the resources by the service 
provider.

4. This proposed approach when scaled and worked in real cloud system, are shown to be 
extremely beneficial to both - the users and service providers.
Results obtained from proposed predictive approach shows Resource saving (compute and 
Memory), energy saved, accuracy of prediction and data size used by prediction. The 
stated SLAs of the Users are adhered to. The required Auto-scaling is shown to be 
efficient. 

There is a considerable improvement over existing ad-hoc approach by the users. Specific 
contributions can be enlisted  as:

a) An enhanced approach for prediction of resources requirements , specifically in Cloud 
environment is developed. When DWA(Distance Weighted Averaging) and LWR( Locally 
weighted Regression) are employed for prediction, the savings of resource units per job of a 
user are shown in results.  Resource  units saved per job as percentage of resource saved 
compared to what was actually getting wasted by ad-hoc method of request for resource is 
found to be on average - 90.68% saving for CPU estimates  using  DWA,  73.44%  saving  
for  CPU  estimates  using  LWR, and 73.28% saving for Memory estimates using DWA, 
88.47% saving for Memory estimates  using LWR.
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b) The percentage reduction in resource estimation error is on average- 95 % for CPU 
estimates using DWA,92.5 % for CPU estimates using LWR and 67.13 % for Memory 
estimates using DWA, 47 % for Memory  estimates  using LWR.

c) The resource units saved by DWA and LWR Compute units pre- diction approach also 
helps in computing Energy saved on INTEL Xeon E5 2687 and INTEL Xeon E5 2697. 
Energy saving computation for various jobs shows average saving of 63% . 

d) The proposed approaches for prediction use small amount of data for processing to arrive 
at the result. Use of K means achieves this  objective. Hence,  it requires less time to 
process the prediction requirements. This is an important consideration for Cloud systems 
where dynamic re- configuration based on users requests and actual use of resources will 
play a crucial role in successfully incorporating this prediction approach into real cloud 
provider system in the future.

e) The framework  built  takes as input the users SLAs, then scales to the requested resources 
as per SLAs ,  internally using the EIBL Prediction approach for the implementation. This 
makes it possible for us to show that SLAs can be met by Cloud Providers more easily as 
compared to present Cloud Providers who have to waste resources being overbooked and 
not utilized by hundreds of users at the same time.

Finally, the results of prediction of resources have been executed and tested with real time data 
trace of Cloud. 
A Private cloud is  set-up in the college to enable  testing of this framework . HP servers -  HP 
DL 380 G9 Server + HP 2920-24G-POE Switch – 3nos.  ,with Virtual connect and HP matrix 
operating environment have been procured  Software component  - HP    Cloud system  
Enterprise  with Cloud system Automation  was procured  and installed 

This platform gives cloud service providers and enterprises the ability to manage the complete 
lifecycle of their cloud service products. The platform enables product creation based on service 
templates, which are generated by utilizing the underlying HP Cloud System software and 
hardware.
HP Cloud System Enterprise enables the distribution, subscription, and consumption of on-
demand cloud services and other IaaS and hosted services, as well as third-party SaaS services. 

Service Level Agreements are  important part of the framework that ensures that Users of the 
Cloud are satisfied . Hence, this is an efficient approach to Capacity Planning for large data 
centers.  

5. Summary of the Findings :

The Cloud usage scenario has various service providers and large number of users. This makes 
it useful to provide Framework for resource provisioning when there are multiple constraints 
like - Task completion time(deadlines) , cost , easy scaling etc. 
1.  The dynamic demand for resources from Cloud makes resource management extremely 
important in design and decision-making processes in cloud computing environments. Providers 
of resources on Cloud offer heterogeneous resources such as compute units, memory and 
storage in Virtual Machine instances (VM). Large scale data centers are essential to service the 
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huge rise in demand for reliable high performance computational and storage services over 
cloud.
2. From real traces, resource requests of the users on cloud show that, they are mostly 
overestimated and sometimes underestimated . Over multiple requests in each task, multiple 
jobs, this cumulative unutilized resource amounts to considerable wasted resources for provider 
and unnecessary expenditure for users. Possible approaches and techniques that can ensure that 
resources are not overbooked and wasted are an urgent necessity.
With increase in computational and storage needs of business users who are moving their 
applications and data to cloud, scaling of cloud resources at the providers end, results in 
increased energy consumption and carbon dioxide emissions. This necessitates looking for 
possible energy saving approaches be adopted in data centers
.
3. Mega data centers that house thousands of servers and consume huge energy per hour at peak 
times lead to increased  operational  costs.  Power consumption contributes to 42 % of data 
centers monthly expenses. More important consideration is that, the huge power consumption 
hastens climate change due to carbon dioxide emissions and use of nonrenewable energy 
sources. Therefore, for environmental and financial reasons it is imperative to try to reduce 
unnecessary booking   of resources when they are not actually  used.

4. This problem can be overcome by finding suitable resource requirement   prediction   
approach,   such   that,   based   on   predicted required amount of resource, resource reservation 
will be done. Efficient resource requirement prediction approach will ensure that resources are 
efficiently utilized. Resource usage studied from existing workloads on cloud, more specifically 
the Google Compute Cloud usage data, shows that these do not have any specific pattern, trend, 
seasonality in the use of resources. Various researchers who have used resource prediction 
techniques such as time Series, exponential smoothing, neural networks, Bayes method etc., 
have shown results for only Web based distributed data, which is much different from actual 
cloud usage data. Cloud Usage data shows bursty non cyclic and non-seasonal behavior. This 
makes resource requirement prediction for Cloud Challenging.

5. The proposed prediction approach applies Enhanced Instance Based Learning( EIBL 
approach. Two variations of EIBL - Distance weighted averaging(DWA) and Locally weighted 
Regression(LWR) have been used in experiments with Google Cluster Data.  Google  Cluster  
Data  is  a  trace of the data used by various users of Google Cloud over a period of 29 day. The 
proposed prediction approaches are tested using Google cluster  trace  data.

6. The results show considerable saving of resources and energy. Resource savings obtained are -
average CPU saved is 79%, average Memory saved is 60% and average Energy saved is 60%. 
Resource predictions obtained by this work are very close to what is actually used by   the user.  
The proposed approach has exhibited high accuracy of 99%     as compared to resource usage 
values from Google trace data. This underlines the contribution of this work to existing body of 
work on cloud resource management, energy saving approaches and green computing as a 
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consequence. The framework that is developed around this, uses the Service Level Agreement 
requirements of the users and scales upto the requirements in real time.

6.  Contributions to the Society : 

Cloud adoption is a major change in the recent times . There are important issues and solutions 
are required for them.

1. Cloud users are not aware of the resources that actually get wasted, when they request for 
resources by only making  an estimate of their needs.  There are a number of businesses which 
try to use the compute and storage from cloud to meet their end users needs. For eg. online 
shopping sites like Amazon , Flipkart etc., store their product information on Cloud and enable 
retrieval of specific Product related information when customers make request. They try to 
overbook resources expecting scaling of business. This leads to huge loss of booked resources 
and hence they end up paying much more than they actually use. With this developed 
solution, we are able to show huge saving for each instance of his resource usage. The 
cumulative saving over multiple such requests, over multiple months, it would show huge 
savings for each customer.

2. For the Cloud Providers, the resources that were overbooked but not used are wasted because 
they are blocked. With the proposed solution the resources need not be provided to uses based on 
their estimate. They can be provided by using the Prediction technique proposed. This results in 
allocation of only resources that each user would use. So, huge number of resources are saved 
which can actually be provisioned to the other customers. So, the number of unique 
requests that can be simultaneously services by the Cloud Provider is increased.

3. The time required for bundling the VMs as per requests of users, then provisioning them to 
customers results in considerable wasted time as in case of reactive scaling used by Amazon 
auto-scaling and Salesforce auto-scaling. Cumulative wastage of time would be high. So, a 
predictive scaling technique that enables pre-bundling of resources that user would require 
in the future , ensures that there is no need for the users to make requests, and bundling 
time would also be saved.

4. Capacity Planning is a major challenge in large organizations because of non availability of 
specific trend, diurnality and pattern. Though other approaches for prediction like time series 
using AR,ARMA, ARIMA, Bayes method, Neural Networks etc., fail for Cloud usage trends, 
this proposed prediction has been proved to be much nearer  to actual cloud resource usage. This 
ensures that better capacity planning can be done while also living upto SLAs of the customers.
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5. The rapid use of  Internet-enabled devices, use of Software-as-a-Service, growth of Big Data 
applications and organizations moving their operations to Cloud-Based Systems has accelerated 
the growth of large scale Data Centers. The Energy used in a large scale data center is a matter  
of great concern for all organizations and nations which are concerned about climate change. 
Some of the largest and most complex data centers are owned by well-known internet giants like 
Facebook, Google, and  Amazon  etc. Organizations strive to reduce operations   and energy 
costs by implementing a variety of solutions such as reliance on renewable energy sources and 
power saving in data centers. For a normal user of cloud, services available from 
providers like Google Cloud Platform, Amazon Web services etc., upfront capital costs have 
dramatically reduced and has enabled them to scale quickly.   To be able to provide such services 
to the users in real time, the operational challenges in managing a Data Center are huge. One of 
the most complex challenges is Energy conservation. Energy efficiency is a very important 
consideration world over. Large organizations have focused on identifying ways for fostering 
energy-efficient protocols, architectures and techniques. To ensure maximum availability of 
services to the clients, most of the data centers try to provision more resources so that customers 
get the resources 24/7 and do not have a chance to complain. Most challenging research is 
happening on energy consumption levels of  data  centers.  The  Environmental Protection 
Agency (EPA) study showed that energy usage doubled from 2006 (61 billion kWh) to 2011. In 
2009, data centers used 2% of worldwide power usage at expenditure of US $30 billion. Gartner 
had forecast cloud related expenditure for 2012 to be at $106.4 billion, a 12.7% increase from 
2011, and revenue is forecast to change from $163 billion in 2011 to $240 billion in 2016 . The 
IT sector contributed to 2 % of carbon dioxide worldwide in 2005, and it is growing by 6% per 
year. Nearly 80% of energy costs can be reduced by effective measures on various devices in a 
data center and 47 M metric tons of carbon dioxide emissions per year can be reduced. 

The selected trace, Google Cluster data, is a trace of users resource requests for 
Google compute cluster. Google Compute Engine unit is a unit of CPU capacity that 
is used to describe the compute capability of machine types. Google has chosen 2.75 
GCEUs to represent the minimum computational capacity of one virtual CPU (a 
hardware hyper-thread) on Sandy Bridge, Ivy Bridge, or Haswell platforms. Hence, 
as a example case of implementation on IVY Bridge for the two processors, Intel 
Xeon E5 2687 and Intel Xeon E5 2697 Energy saved is calculated based on idle
Thermal Dissipation and Maximum energy consumed. Energy consumed per job, by 
the user in each method - adhoc resource request method, by  using  DWA,  by  using  
LWR,  for  each  type  of machine Intel Xeon E5 2687 and Intel Xeon E5 2697 is 
computed. The Resource requests in trace are a fraction of maximum resource   in  the
trace. Energy range = (Max energy(on full loading) −Min energy  (on no load ) )

    For Intel XeonE5 2687,Energy range = 184W −150W =    34W  

                  For Intel Xeon E52697, Energy range = 148W − 130W = 18W



23

                   

Fig. 6.1:   Percentage of Total Energy saved per user (sum of energy savings of all jobs 

of each user),On Intel XEON E5 2687 and Intel Xeon E5 2697 due to resource

requirement prediction by DWA for the user with uid 148

Similarly , Energy Saved per user for execution on Intel Xeon E5 2687 and Intel Xeon E5 2697 
using LWR method are also computed. 

Both these methods- DWA and LWR have shown energy savings of nearly 50%, which amounts 
to huge value when cumulative savings of energy are taken into consideration.

This is a major contribution to the society. 

7. Comprehensive Results obtained :

The tables below give a comprehensive information regarding the savings obtained, accuracy of 

prediction and the energy savings obtained by this work using two approaches-  DWA( Distance 

Weighted Averaging )  and LWR( Locally Weighted Regression) .
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           Fig. 7.1. Sum of compute units saved per job by using DWA 

                    Fig. 7. 2.  Sum of compute units saved per job by using LWR 
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                  Fig. 7.3. Mean Absolute Percentage Error and reduction for CPU estimate   
per Job by using DWA

             Fig. 7.4. Mean Absolute Percentage Error and reduction in error for CPU 
estimate per  job by   using LWR
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   Fig. 7. 5. Mean Absolute  Percentage error and reduction in error for memory 
estimates  per job by using DWA. 

        Fig.7.6. Mean Absolute Percentage Error and reduction in error for Memory     

estimate per job by using   LWR
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      Fig. 7.7. Energy saved per job by using DWA  in   2687

                                        Fig. 7.8.  Energy saved per job by using LWR in 2687
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Figure 7.9.:  Energy saved per job by using DWA  in   2697

   

                                  Fig. 7.10.   Energy saved per job by using LWR in 2697
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8. Whether Any Ph.Ds enrolled / produced :

Yes, The Co-investigator of this project ( Dr.P.V.Sudha)  was awarded Ph.D for her 

work, which included part of this work. 

9. Publications resulting from the project :

       The following Papers were Presented as a result of the work  done in this Project -

1. “ Compendium of load prediction models and approaches “  in National Conference 
on Emerging and Innovative Trends in Computer Science (NCEITCS- 2014) ,  April 
2014 , Hyderabad.

2. “Characterization of Elasticity in Clouds with promise of SLAs “  in Fourth 
International Conference on Advances in Computing and Communications.
( ICACC- 2014 ) ,27- 29 Aug. 2014, Kochi . 

3. " Energy Saving in Cloud by using Enhanced Instance Based Learning (EIBL) 
for Resource Prediction", Accepted to be published as a chapter  in Springer -  
Sustainable Cloud and Energy Services,  2017 , Editor -  Wilson Rivera Gallego , 
Professor of Computer Science and Engineering ,University of Puerto Rico at 
Mayaguez (UPRM)

4. Thesis Titled " Prediction of Resource Requirements in Google Compute Cloud 
"   was accepted. Co- investigator of this project ( Dr.P.V.Sudha ) was  awarded 
Ph.D in 2016 . Part of her work is contribution to this Project.
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